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GOAL
feasibility of a liquid metal option for high 

power proton beam targets

• Proton induced shocks:
– surface velocities

– scaling laws

– impact of cavitation voids on particle production

• MHD
– Pinching

– Deflection



A.Fabich, J.Lettry, NFWG CERN

THIMBLE

• ISOLDE GPS

• steel frame
– with thimble/trough

– viewing windows

• optical read-out by 
high-speed camera
– 4000 frames/s

– Shutter 12.5 µs
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Mercury 
Thimble after use

V=1.3cm3

1cm

p-beam
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TROUGH

8 cm3 mercury

Length (beam 
axis) 60 mm

Diameter 12 mm
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Explosion Velocity
Initial velocity

-gravity

-drag force
(Argon 1 bar)

-surface tension 
neglected
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Trough Event
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Protons vs. Mercury
PSB (NuFACT CERN)

• pulse intensity
1-33 1012 p+ (230 1012 p+)

• pulse length
0.6-19 µs        (3.2 µs)

• height scan

• spot size (Gaussian)       

σ=1.2-4.1 mm (4 mm)

• Average beam density

0.4-1.5 TP/mm2 (3 TP/mm2)

1.4 GeV proton beam

ISOLDE GPS, Aug. 2001

40 single pulse events on thimble

ISOLDE GPS, April 2002

24 single pulse events on trough
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• Assure centering of the beam
vertical scan of target
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Position verified with

1. SEM grid

2. aluminum foil

3. beam scan on target

• beam centered

• slight offset causes minor effect

Steel 
frame

Height Scan

p-beam

Heat capacity and linear expansion coefficient of 
mercury and steel much different ⇒ results in a 
factor 6 less effect in steel for the same proton 
intensity (neglecting other effects like impedance)

See also slide ‘Target Material Properties’

Mercury target
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Target Material Properties

Not all elements indicated

Despite all other 
advantages, 80Hg is 
one of the elements 
with very high thermal 
expansion coefficient

heat capacity [J/kg K]

Steel 450

Hg 140
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• velocity drops for pulse length > 3 �s

• due to traveling pressure wave �
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Cavitation
• cavitation might occur

� reduced interaction length

• assuming cavitation in center
� low percentage of particle interaction lost
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Spot size

17 TP corresponding BNL event:

σ≈1mm, v≈160m/s
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Scaling 

Intensity
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Trough � Jet

BNL events showed:

• explosion velocities 
of thimble 2 times 
higher than jet
– due to free surface



TARGET STATION PARAMETERS

• Diameter horn = 46 mm

• 5 σ beam ≤ horn radius

⇒ σ beam = 4 mm

• rtarget=3 σ beam

⇒ dtarget = 24 mm

S. Gilardoni
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Scaling to �-Factory
• For maximum intensity at ISOLDE: v=50 m/s

• for �-Factory (CERN):

• intensity 7 times higher

• spot size 2 times larger (4 mm)

• trough�jet: factor 0.5

• jet under vacuum removes drag forces

• pulse length: 3.2 �s � sound travels 5 mm

• Proton energy from 1.4 GeV to 2.2 GeV: gain 0.7

� Explosion velocities about 2*jet speed � 4�-explosion
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4�-explosion not acceptable
• Where we can gain?

– spot size fixed (horn dimensions)
– 2.2 GeV: already at minimum dE/dx
– Pulse length to an order of 100�s “solves everything”
– Mercury ‘worst’ element we could use

– invert jet direction

– Remember: velocities given are v(t=0)

� These velocities occur only 
in small part of the target
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Magneto HydroDynamics
Liquid metal Jet in a high magnetic field

• Grenoble High Magnetic Field

• Vertical Solenoid, Bmax=13/20 T

• Mercury jet:
– vmax=15 m/s
– d=4mm
– Collinear and inclined to 6°

• Optical read-out:
– High speed camera

– ≤ 8000 frames/s
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Inner Setup

Pneumatic valve

Nozzle d=4mm

Drift lengthmax l=27 cm

Moveable mirror system

Mercury reservoir
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�-collection via a 20 T solenoid

(US-scheme)

B=0 T

- Jet deflection

- Reduction of the jet velocity

valve

magnet bore

1c
m

nozzle

Mercury jet (v=15 m/s) 

Observed MHD effects in the 
supply piping and free jet:

B=18 T

Magneto-Hydro-Dynamics

GHMFL Grenoble

March & September 2001



A.Fabich, J.Lettry, NFWG CERN

First observations
• Displacement of the jet
• Velocity decrease
• All observations are qualitative!

B=0

Recorded at   
6.5 cm from 
nozzle

B=16 T
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Caused by?

• MHD in pipe system and/or of free jet?
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13-TESLA SETUP

Indicated:

- mechanical setup

- 0°/6 ° nozzle

- B-Field

- jet & image 
positions for all 
events
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Events March 2002
13 Tesla setup

• never impossible to inject a jet in(to) the magnetic field

• jet surface smoothed in high magnetic field

• no deflection of jet at 6° nozzle

• camera resolution <0.5 mm, time resolution 25µs

• main problem: establishing a ‘good’ jet
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MHD summary
• 13 Tesla setup:

– No ‘frightening’ effects
– smoothing of jet surface

• 20 Tesla setup:
– Observation of deflection/velocity reduction

• MORE EFFORT on ESTABLISHING A JET
– pressure supply system
– nozzle design
– Collaboration with EPFL Lausanne
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For your information/
advertisement

• Possible sites for further studies:

•ISOLDE: 
superb location for studies on proton induced shocks for all 
kinds of targets

•GHMFL:
Within next two years a 17 Tesla-40 cm bore magnet is 
constructed. 
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Last Slide

• No further tests in ISOLDE for 2002
• Knowledge is sufficient to extrapolate 
behavior of jet target in proton beam and 
to benchmark codes.
• compare directly with codes

• (last) run at GHMFL in June ’02
• 20-Tesla solenoid
• 6 ° nozzle only


